Co-expression of adipogenic and osteoblastic proteins in MSC-derived osteoblasts following co-culture with MSC-derived adipocytes

Aline Clabaut1, Meyrem Tardivelle2, Céline Grare1, Pierre Hardouin1, Odile Broux1
1) PMOI, ULCO, Boulogne-sur-Mer, France 2) BiCel, Biolmaging center, Université de Lille, France

Background

In osteoporosis and aging, bone loss is accompanied by an increase of adiposity in the marrow. Marrow adipocytes and osteoblasts compete in their differentiation from mesenchymal stem cells (MSC), and adipocytes are suspected to modify osteoblasts phenotype.

Indeed, in our lab, we have previously showed with in vitro coculture model based on human primary MSCs, that MSC-derived osteoblasts showed appearance of adipocyte and decrease of late osteogenic mRNA markers. Thus, MSC-derived adipocytes seem to be capable of inducing MSC-derived osteoblasts to differentiate towards an adipocyte-like phenotype. These results support the hypothesis of a transdifferentiation of osteoblasts in the vicinity of adipocytes. The aim of this study was to confirm this transdifferentiation.

Experimental design

- RNA extraction from osteoblasts (OB) and co-cultured osteoblasts (OB-cc) - RT-qPCR
- Immunofluorescence analysis
- Adipocytes (AD) and osteoblasts (OB) differentiated from hMSC were co-cultivated during 48h

Results

1. The higher expression levels of reprogramming gene Oct-4 observed in OB-cc compared to OB, confirmed the phenotypic conversion of OB after co-culture

Quantitative RT-PCR analysis of the Oct-4 gene in OB and OB-cc. Graphs were representative of 4 independent experiments, performed in duplicate.

2. Adipocyte-specific gene expression levels in OB-cc were comparable to MSC-derived adipocytes precociously differentiated and confirmed the commitment of OB-cc towards an adipocyte-like phenotype

(A) Simple immunofluorescence confocal analysis showed that leptin and osteocalcin are specific markers for adipocyte and osteoblast, respectively. The green fluorescence revealed the leptin expression (A 488) and the red fluorescence revealed the osteocalcin expression (A 568). Nuclei were stained with DAPI.

(B) Double immunofluorescence microscopic analysis showed a co-localization of leptin (e) and osteocalcin (f) in the same OB-cc cell. (g) Overlap of e and f images. Nuclei were stained with DAPI.

3. Immunofluorescence microscopic analysis confirmed the co-localization of adipogenic and osteoblastic proteins in OB-cc

(A) Leptin

(Osteocalcin

(B) HSD11b1

PPARg

In this study, we showed MSC-derived osteoblasts can transdifferentiate into another lineage under the influence of secreted products released by MSC-derived adipocytes. Thus, the increase of bone marrow adiposity observed during aging or osteoporosis is not a passive phenomenon; adipocyte can perturbate OB phenotype and so are highly suspected to be involved in bone loss. The understanding of the mechanisms of this phenotypic conversion could open new approach for osteoporosis treatment.

This work was funded by ULCO. The authors have declared no conflict of interest.