Genetic variations, DNA methylation patterns and protein expression in RANK contribute to breast cancer cell behaviour in bone

Asim Khogeer1,2, Silvia Marino1, Prabha Peramunendige1,2, Sachin Wani2, Omar M. Albagha2, and Aymen I. Idri1

1 Academic Unit of Bone Biology, Department of human metabolism, School of Medicine & Biomedical Sciences, Medical School, University of Sheffield, Bask-Hill Road, Sheffield, S10 2RX, UK.
2 Rheumatic disease unit, The Centre for Molecular Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, Crewe Road, EH4 2XU, UK.

Introduction
The outcomes of breast cancer patients depend on the development of distance metastases (1). Bone is one of the most common locations for metastasis, and bone metastasis occurs in up to 70% of patients with advance breast cancer (2). Bone metastasis is associated with a number of skeletal complications including, pain, hypercalcaemia and pathological fractures. Breast cancer cells commonly cause osteolytic metastases, a process that is at least partly dependent on osteoclast-mediated bone resorption (3,4). Osteoclasts the bone resorbing cells and their precursors express RANK, while osteoblast the bone forming cells express RANK ligand. Receptor activator of NF-kappa-B (RANK) and its ligand (RANKL) are members of the TNF receptor super family. These molecules do not only play a role in the pathogenesis of bone disorders but also have a central role in mammary gland biology (5). Recent studies reported that RANK is involved in cancer and metastasis (6). However, the exact role of RANK in cancer induced bone cell activity and osteolysis is not fully understood. The present study, therefore, investigated the role of RANK receptor in breast cancer metastatic cell behaviour in bone using different approaches.

Objective
The aim of this study was to investigate the role of RANK in breast cancer induced bone cell activity and osteolysis in vitro and in vivo.

RANK is highly expressed in human bone tropic MDA-231 (MDABT) breast cancer cells

Figure 1. RANK expression in breast cancer cells were assessed by Western blot analysis (A). The quantification of RANK expression from the blot is shown in (B) and expressed as a ratio of actin (n=3).

Long-term exposure of human MDA breast cancer cells enhances the ability of these cells to stimulate osteoclastogenesis and alters methylation in RANK

Figure 4. Long-term exposure of human parental MDA breast cancer cells to RANKL 100 ng/ml for up to 50 passages enhances their ability to stimulate osteoclastogenesis. Cancer-bone marrow (BM) cells co-culture A (cancer cells) and B (conditioned medium, CM). Images of the cultures (C). Methyltion pattern of RANK in breast cancer cells was detected by 450K illumina DNA methylation system. Dots indicate hyper-(red) and hypo-methylated (grey) positions compared to parental (D).

Knockdown of RANK in bone tropic MDA breast cancer cells reduces cell migration and ability to stimulate osteoclastogenesis

Figure 5. RANK expression in breast cancer cell lines was successfully knocked down by RNAs techniques. Silencing of RANK reduced cancer cell direction migration (A) and reduced their ability to enhance osteoclast formation in vitro (C), without affecting cancer cell viability. Osteoclast numbers were assessed by counting TRAP positive multinucleated cells. Representative images from wound healing cultures (B) andphotomicrographs from cultures are shown in (D).

Conclusion
Silencing of the RANK receptor in bone tropic MDA-231 breast cancer cells reduces cell motility and ability to stimulate osteoclastogenesis via a mechanism dependent in part on P38 inhibition. Moreover, long-term exposure to RANKL did not significantly induces *homo* epigenetic changes in RANK but there were significant differences in RANK methylation profile between parental and bone tropic breast cancer cells. The role of these effects in the regulation of breast cancer cell behaviour in bone will require further in vivo investigation.

References

Acknowledgements
I would like to acknowledge the advice and guidance of Dr. Aymen Idri and Dr. Silvia Marino, and the Ministry of Health of Saudi Arabia for their financial support.